Towards reliable vegetation monitoring in the relict arcto-alpine tundra of the Krkonoše Mts.: development of a methodology based on UAV multi-temporal data

> Lucie Kupková, Markéta Potůčková, Lucie Červená, Jakub Lysák, Jana Müllerová, Stanislav Březina, Záboj Hrázský

Project and Team

Operational program Environment: *Development of methods for monitoring of the Krkonoše Mts. tundra vegetation changes using multispectral, hyperspectral and LIDAR sensors from UAV - drones (2019 – 2023)*

KRNAP: Stanislav Březina, Záboj Hrázský, Přemysl Janata, Jan Pačák

Charles University Prague, Faculty of Science, Dpt. Of Applied Geoinformatcs and Cartogaphy: Lucie Kupková, Markéta Potůčková, Lucie Červená, Jakub Lysák, studenti

Institute of Botany Czech Academy of Science Průhonice: Jana Müllerová, Tereza Klinerová, Přemysl Bobek

Project advisor – Clive Hurford (habitat monitoring specialist; a chair of the Eurosite Remote Sensing Support Group)

Starting points

- Tundra ecosystems (alpine treeless) belong to the most valuable natural phenomena worldwide
- Biotopes above the treeline are very sensitive to various types of environmental factors (... climatic change)
- Current problems addressed within the project:
 - Expansion of *Calamagrostis villosa, Molinia caerulea* and *Deschampsia caespitosa* into the *Nardus stricta* stands
 - Dwarf pine expansion
- Changes can be relatively fast in these areas and reliable monitoring is very important
- Earth observation a potentially powerful tool for the monitoring (objectiveness, repeatability, data from an extensive area in one moment, several times during season...)
- Close collaboration of botanists and geoinformatics

Goals

- To evaluate and compare potential (advantages vs. drawbacks) of different types of remote sensing data (multispectral, hyperspectral, LiDAR) for accurate mapping of tundra vegetation cover
- To test the accuracy of different classification methods (pixel and object-based) for different types of vegetation and different types of data.
- To monitor the changes over 5 years (seasonal, inter-annual) implications for management (type of management vs. zone without human interference)
 - Detection of change... change vs. error of the used method
- To propose a reliable methodology for tundra vegetation monitoring on the species level using RS data from drone
- To implement the methodology in the NP monitoring practice

Study area – eastern tundra - research plots within the Eastern Tundra

Research plots

2 Luční h flexuosa, shrubs, s 3 Úpské

1 Bílá louka meadow (acidophilous alpine grasslands, species poor stands dominated by matgrass – Nardus stricta, reedgrass – Calamagrostis villosa and purple moor-grass – Molinia caerulea, Norway Spruce - Picea abies)
2 Luční hora Mt. (fine grain mosaic dominated by wavy-hair grass - Avenella flexuosa, moss layer, close alpine grasslands, alpine heathlands, small shrubs, stone sea – boulder scree)

3 Úpské rašeliniště bog (boreal ombrotrophic raised bog, hummocks, moss layer and hollows, dwarf pine, grasses, lakes)

4 Kar Úpské jámy corrie (species rich subalpine tall grasses, Vaccinium heathlands, small springs, mosses, dwarf pine, subalpine deciduous shrubs, boulder scree... Krakonošova garden... rich biodiversity)

Research set-up

- Four research plots with different types of vegetation
- Each plot extent: 100 × 100 m
- Drone data acquisition: 4 times in the season (mid of June, July, August, September)
- Multispectral (MS), Hyperspectral (HS) and LiDAR data
- MS and HS data pixel size: 3 cm
- Spectral resolution: MS data 3/5/8 bands, HS data 270 bands
- Lidar data scanning density: ca 900 pts./m²
- 4 years of field monitoring
- 5 years of methods testing and results evaluation/comparison

Used instruments

- Drone: DJI Matrice 600 Pro (price: 6,400 EUR)
- Gimbal Ronin (HS camera)
- IMU and GNSS (positional accuracy ca 5 m)

1. MS camera Micasense RedEdge – M[®]
 Spectral bands: Blue, green, red, red edge, near IR – multispectral scanner (MSS)

Price: 6,000 EUR

2. RGB camera Sony A7 ILCE-7 24,3 Mpx; lens-Voigtlander Color – Skopar 21 mm

Price: 920 EUR + 520 EUR

HS camera – Headwall Nano-Hyperspec[®] (enables vegetation health evaluation)

- Pushbroom scanner
- 640 pixels
- lens 17 mm (possible also 12 mm a 23 mm)
- 270 bands (398,784 nm 1 001,84 nm, spectral sampling 2,24 nm)
- Radiometric resolution: 12bit

Price: 40,000 EUR

LIDAR RIEGL miniVUX-1UAV

- Compact & lightweight (1.55 kg / 3.4 lbs)
- 360° field of view
- Multiple target capability up to 5 target echoes per laser shot
- Scan speed up to 100 scans/sec
- Measurement rate 100,000
 measurements/sec

Price: 72,000 EUR

Used methods – UAV data acquisition

- Scanning from a height of about 50 60 m above the ground (constant for Luční hora, Bílá louka, Úpské rašeliniště)
- At the area kar Úpské jámy corrie a descending flight trajectory according to the terrain configuration (final altitude also about 50 m above the ground)
- Each area was flown sequentially in parallel flight lines
- forward overlap of 85% and sidelap 70%
- Calibration panels (ground control points GCP) for radiometric calibration and geometric transformation used black and white chessboard 30×30 cm, placed in the corners of the area and further 5 inside the plot (for HS data)

Flight trajectories

Calibration panel (GCP)

Used methods – field vegetation mapping

- Training and validation vegetation data collected by our colleagues from the Botanical Institute on the same dates as the data from the drones
- Trimble GeoExplorer GeoXH 6000 or Trimble GeoExplorer GeoXH 2008 GPS used
- Positional accuracy 1-5 cm
- Collector for ArcGIS with orthophoto from UAS (taken several days before the vegetation data collection)
- Record a point in the center of vegetation patch and create a buffer around it
- Manual correction of the collected polygons position in GIS based on the orthophoto (small polygons not used in case of uncertain localization)

Outputs:

- Classification legend (two levels: general 15 categories, detailed 50 categories)
- Training and validation polygons (882 polygons ca 1/3 for used for training and 2/3 for validation, total area 5901 m²)
- 3. Vegetation map for each area

Vegetation map for Bílá louka meadow plot

Classification legend

Тур	Description
1	Boulder scree and artificial surfaces
2	Norway spruce stands
3	dwarf pine
4	subalpine Vaccinium vegetation
5	closed subalpine grasslands
5a	Nardus stricta
5b	species rich stands with abundance of dicots
6	subalpine tall grasslands
6a	Calamagrostis villosa
6b	Molinia caerulea
6c	Deschampsia cespitosa
7	subalpine tall-forb grasslands
8	alpine heathlands
9	wetlands and mires
10	open water
11	wind-exposed alpine grasslands
12	individuals or small groups of trees

typ	Description
af	stands dominated by Avenella flexuosa, minimal cover of other species (mainly Anthoxanthum alpinum, Cx bigelowii and herbs up do 10%)
afs	stands dominated by Avenella flexuosa, high cover of other species (mainly Anthoxanthum alpinum, Cx bigelowii and herbs)
bahno	histosol, dry peatland water holes
bet	individual or a group of Betula sp.
bor	Vaccinium myrtillus stand, shrubby vegetation
brus	Vaccinium vitis-idaea stand, shrubby vegetace
са	stand dominated by Calamagrostis arundinacea, minimal cover of other species (up to 10%)
cetr	Cetraria islandica stand
cv	stand dominated by Calamagrostis villosa, minimal cover of other species (up to 10%)
cxbig	stand dominated by Carex bigelowii
cxlim	Carex limosa stand with histosol
desch	stand dominated by Deschampsia cespitosa, minimal cover of other species (up to 10%)
erang	stand dominated by Eriophorum angustifolium with histosol
ervag	stand dominated by Eriophorum vaginatum
hup	Huperzia selago stand
jerab	individual or a group of Sorbus aucuparia
junc	stand dominated by Juncus filiformis, minimal cover of other species (up to 10%)
klec	Pinus mugo stand
klen	individual or a group of Acer pseudoplatanus
lis	lichens (mainly Cladonia sp.)
listnace	deciduous trees, see description for details
luz	Luzula luzuloides stand
mech	mosses
mokvskal	wet outcrops covered by mosses
mol	stand dominated by Molinia caerulea, minimal cover of other species (up to 10%)
nard	stand dominated by Nardus stricta, minimal cover of other species (up to 10%)
niva	tall-forb vegetation
ras	Sphagnum sp. stand
rostr	stand dominated by Carex rostrata with histosol
scirp	stand dominated by Scirpus sylvaticus
skala	rock outcrop
smrk	individual or a group of Picea abies
sut	blosckfields, mostly bare, with lichens
ten	fine grain mosaic of Trichophorum cespitosum, Eriophorum vaginatum and Nardus stricta
trich	stand dominated by Trichophorum cespitosum, minimal cover of other species (up to 10%)
vaculig	Vaccinium uliginosum stand, shrubby vegetation
voda	water
vrba	individual or a group of Salix sp.
vres	Calluna vulgaris stand, shrubby vegetation
vyfuk	mosaic of rocks, bare soil, mosses and vegetation, wind-exposed alpine grassland
smes	see detail description
pram	vegetation of subalpine springs
sw	Swertia perennis stand, vegetation of subalpine springs
rasros	stand of Sphagnum sp. with significant cover of Drosera rotundifolia

Used methods – classification of vegetation

- Data prepocessing (radiometric, geometric)
- Resampling: pixel size 9 cm, HS data: 54 bands
- Detailed legend according to the categories present in individual areas
- Supervised classification using field training vegetation data

MS (from both cameras RGB, MSS; RGBMS = RGB+MSS) and HS data the same methods:

- 1. Pixel based methods: Maximum likelihood MLC, Support Vector Machine -SVM (SW ENVI and ArcGIS), Random Forest - RF (SW R or ArcGIS)
- 2. Object based classification OBIA: Support Vector Machine or Random forest classifier (SW ENVI or e-Cognition)
- Images from each date and data type classified (1) separately and also (2) in multitemporal composite = images (all bands) from all dates were merged and classified as one image (32 bands for RGBMS data and 216 bands for HS data for each research plot),
- Various multitemopral combinations

Classification legend for individual areas

Bílá louka	Luční hora Mt.	Úpské	Kar Úpské
meadow		rašeliniště bog	jámy - corrie
afs	af	bare soil/mud	bor
CV	afs	cxlim	са
cxbig	bor	erang	desch
desch	desch	ervag	erang
mol	Dwarf pine	junc	dwarf pine
nard	lis	dwarf pine	list
Picea abies	nard	mol	mokvskal
	blockfields	nard	mol
	Calluna vulgaris	rostr	nard
	vyfuk	Picea abies	niva
		ten	pram
		trich	pramsw
		trichcesp	rasrost
		vaculig	scirp
		water	Picea abies
		Calluna vulgaris	blockfields
			Calluna vulgaris

Used methods – accuracy assessment

- Training and validation data collected in the field polygons:
 - 1/3 used for training and 2/3 for validation (802 polygons, total area 5,901 m²)
- Random sample points generated within the validation polygons stratified according the summarized area of training + validation data
- Number of validation points for each mosaic: 3,393 (calculated based on reliability of validation accuracy on 2% level (Foody, G.M. Sample size determination for image classification accuracy assessment and comparison. *Int. J. Remote Sens.* 2009, *30*, 5273–5291)
- Minimal number of points for 1 category: 50
- Points generated in the center of pixels
- Minimal distance between the points: 13 cm (no points were generated in neighboring pixels)
- Standard methods for classification accuracy assessment used:
 - Overall accuracy (OA) share of correctly classified pixels on the total number of pixels
 - Kappa index compares the result of the classification with the classification created by a random
 process of classifying pixels into individual classes, 1 means a perfect match and 0 represents a
 purely random result

Measures for individual categories accuracy evaluation

- Producer's accuracy (PA) the probability that a reference class is classified correctly
- User's accuracy (UA) the probability that a pixel in the classification actually represents this reference (field) class

(Jensen, R.H. Introductory Digital Image Processing. A Remote Sensing Perspective. 2005, Pearson Prentice Hall)

Results – Competitive species – seasonal changes in phenology

June

July

August

Results – Examples of the acquired data

June

August

Results – Classification outputs

Bílá louka meadow

Luční hora Mt.

Úpské rašeliniště bog

Results – Classification outputs: Kar Úpské jámy – corrie

Results – Overall accuracy – Bílá louka meadow

	Parameters	UAV HS data			UAV MS data		
Temporal resolution		MLC	RF	OBIA SVM	MLC	RF	OBIA SVM
Mono-temporal	OA	87.4	<u>90.1</u>	<u>91.5</u>	83.6	<u>90.4</u>	<u>94.0</u>
	month	July	July	August	July	July	July
	OBIA						
	parameters			50, 90, 5			20, 60, 5
July, August	OA	91.1	93.7	94.6	92.6	<u>92.7</u>	<u>95.9</u>
	OBIA						
	parameters			20, 60, 5			20, 60, 5
June, July,	OA	<u>92.7</u>	<u>93.7</u>	<u>95.6</u>	<u>93.8</u>	92.6	95.3
August							
	OBIA						
	parameters			50, 90, 5			20, 60, 5

Comparison of OAs for UAV mono-temporal and multi-temporal data using MLC, RF, and OBIA SVM classifiers

Best F1-score achieved for individual species Bílá louka meadow

	Best F1-score (in %)					
Species	F1- score	Data	Composite (month/s)	Classifier		
	94.7					
NS		MS	7,8	OBIA		
	99.4					
CV		MS	6,7,8	OBIA		
	99.2					
МС		MS	7,8	OBIA		
	96.3					
DC		HS	6,7,8	OBIA		
	59.0					
AF		MS	7,8	OBIA		
	45.6					
CB		HS	6,7,8	OBIA		

Species abbreviations: NS - Nardus stricta, CV - Calamagrostis villosa, MC - Molinia caerulea, DC - Deschampsia cespitosa, AF - Avenella flexuosa, CB - Carex bigelowii

Change detection – proposed methodology

The developed methodology takes into account the following key monitoring parameters:

- very high classification reliability (repeatability)
- high spatial resolution (capturing changes)
- easy feasibility (sustainability)
- affordability (sustainability)

Monitoring of changes – proposed methodology

- Priority species
- Level of small plots 8 plots in eastern tundra and 8 in western
- New data for each plot once a 5 years
- UAV RGBMS data in combination with aerial images (dwarf pine, Picea abies), spatial resolution 9 cm
- 2 dates of UAV data acquisititon July and August
- Botanical mapping in the first year (training and validation data)
- Ensemble methods combination of MLC and RF (script in R)
- Accuracy over 80%

Change detection (methodology will be published)

- statistical (quantitative, non-spatial) the result gives only overall information about the gain and loss for each class
- spatial the result also gives information about where the change occurred

Priority species

Calluna vulgaris stand, shrubby vegetation	
Vaccinium myrtillus stand, shrubby vegetation	
Pinus mugo stand	
stand dominated by Eriophorum angustifolium with histosol	
water	
blockfields, mostly bare, with lichens	
stand dominated by Calamagrostis villosa, minimal cover of other species (up to 109	6)
stand dominated by Molinia caerulea, minimal cover of other species (up to 10%)	
stand dominated by Nardus stricta, minimal cover of other species (up to 10%)	
stand dominated by Deschampsia cespitosa, minimal cover of other species (up to 1	0%)
ndividual or a aroup of Picea abies	

• Manual, Action plan, training

Final map output of change detection

Conclusions

- We confirmed that UAV MS data with GSD of 9 cm are suitable for the reliable monitoring of dominant grass species in tundra with high accuracy and their changes
- The abundance/density/homogeneity of the species and its cover were essential for classification accuracy. The dedicated tests, by
 mainly using other classifiers, and other improvements should be continued in the future to increase the mapping accuracy of
 sparse growth and low-density species.
- We showed that adding a temporal dimension can be very beneficial, as the multi-temporal approach increased the accuracy in all cases. Our findings indicate that two dates might be sufficient for highly accurate classification results.
- Unexpectedly, the higher spectral resolution of HS data did not increase accuracies, and the results for the UAV MS and HS data
 were comparable. Spatial resolution was more important for the classification accuracy at the species level than the spectral
 resolution.
- These findings provide useful implications for nature conservation practices, because the price of suitable multispectral sensor/s
 and complexity of processing are significantly lower in comparison to hyperspectral data. Moreover, given weather constraints and
 costs, it is possible to reduce the number of dates to just two within the growing season without compromising the overall
 accuracy of the results.
- Unique method for change detection has been elaborated UAV data, very detailed level, reliability
- We look forward to seeing the results of the change monitoring in 4 years!

Biodiversity and Conservation (2021) 30:3433–3455 https://doi.org/10.1007/s10531-021-02255-y

ORIGINAL PAPER

Towards resolving conservation issues through historical aerial imagery: vegetation cover changes in the Central European tundra

Markéta Potůčková¹ · Lucie Kupková¹ · Lucie Červená¹ · Jakub Lysák¹ David Krause^{1,2} · Záboj Hrázský² · Stanislav Březina² · Jana Müllerová³

Received: 6 August 2020 / Revised: 17 May 2021 / Accepted: 20 July 2021 / Published online: 26 July 2021 © The Author(s), under exclusive licence to Springer Nature B.V. 2021

¹ Faculty of Science, Charles University, Albertov 6, Prague, Czech Republic

- ² The Krkonoše Mountains National Park Administration, Dobrovského 3, Vrchlabí, Czech Republic
- ³ Institute of Botany, The Czech Academy of Sciences, Zámek 1, Průhonice, Czech Republic

Remote Sensing of Environment 294 (2023) 113645

Towards reliable monitoring of grass species in nature conservation: Evaluation of the potential of UAV and PlanetScope multi-temporal data in the Central European tundra

Lucie Kupková^{a,*}, Lucie Červená^a, Markéta Potůčková^a, Jakub Lysák^a, Markéta Roubalová^a, Záboj Hrázský^{a,b}, Stanislav Březina^b, Howard E. Epstein^c, Jana Müllerová^{d,e}

^a Department of Applied Geoinformatics and Cartography, Faculty of Science, Charles University, Albertov 6, Prague, Czech Republic

⁷ The Krkonoše Mountains National Park Administration, Dobrovského 3, Vrchlabí, Czech Republic

Department of Environmental Sciences, University of Virginia, 211 Clark Hall, 291 McCormick Rd, Charlottesville, VA, USA Institute of Botany, The Czech Academy of Sciences, Zámek 1, Průhonice, Czech Republic

Jan Evangelista Purkyne University in Ústí nad Labem, Faculty of Environment, Pasteurova 3632/15, Ústí nad Labem, Czech Republic

A R T I C L E I N F O

ABSTRACT

Thank you for your attention! <u>lucie.kupkova@natur.cuni.cz</u>

www.TILSPEC.cz